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Abstract

Location-based services (LBS) are generating vast bodies of data
relating to the whereabouts of their users. This is due to the ease
with which modern mobile phones can communicate their pre-
cise location via the global positioning system (GPS). Online so-
cial networks have begun using LBS to aid social encounter and
place discovery in cities. A spatial analysis of the aggregate ac-
tivity generated by such networks can show us how social ac-
tivity in a city is distributed, revealing fine-grained spatial pat-
terns evident in the social life of cities. Large-scale data from
one such network is analysed across three cities in order to pro-
duce an inter-urban analysis. Hubs are identified from activity
distributions, and measures of polycentricity, fragmentation and
centralisation are examined with respect to levels of social inter-
action. Spatial clustering tendencies are analysed to determine
the characteristic logics of agglomeration in urban social activ-
ity. These comparative measures are used to discuss the spa-
tial structure of the three cities in question. Finally, the impact
of LBS technologies are discussed in the context of urban analy-
sis.

Introduction

Large-scale datasets relating the activities of individuals to ur-
ban space are becoming increasingly available. These data trails
reveal a multiplicity of invisible cities (Batty, 1990) which are be-
ginning to emerge as objects of research. The instances of such
urban analysis which exist (Pulselli et al., 2006; Ratti et al., 2007;
Reades et al., 2009) have focused on the geo-location of mobile
telecommunications traffic. Other attempts at “sensing human
society” (Shoval, 2007) include the detection of bluetooth sig-
nals in urban space (O’Neill et al., 2006). By contrast, this paper
presents an analysis of a more structured geo-social dataset from
a location-based social network, which relates social network in-
teractions to specific venues in a city.

‘Networked urbanism’ (Graham and Marvin, 2001a) has con-
tained the promise that “the city itself is turning into a con-
stellation of computers” (Batty, 1997) for over a decade now.
During this transition towards ubiquitous computing, 3G mo-
bile phones have begun interacting with the built landscape in
ever more sophisticated ways. The aggregate data produced by

location-based services (LBS) can be a powerful tool in analysing
this relationship. This paper shows how the informational space
of flows (Castells, 1989) engages the physical landscape of the
city, through interactions which may themselves change the mo-
bility patterns of groups in urban centers. If we are to move
beyond the observation that cities are “parallel constructions
linking both urban places and electronic spaces in complex
ways” (Graham, 1997), this unfolding relationship between on-
line social networks and the urban landscape needs to be ex-
amined using empirical analyses of large-scale datasets such as
those presented here.

Location-Based Social Networking

Location-based social networks allow friends to share locative
information via GPS-enabled mobile phones. This paper analy-
ses data from a location-based social network called Foursquare
(4sq) (Foursquare, 2010). Users interact with 4sq by checking-
in at a venue using their 3G mobile phone. This communicates
their whereabouts to their friend group on the network. Venues
can be of any kind, usually comprising a site of social encounter
either located in a building (such as a bar, restaurant or cafe) or
a public space (such as a park or public square). The venue in-
formation is supplied by the 4sq community, such that the net-
work’s data also constitutes an instance of crowd-sourced map-
ping (Haklay et al., 2008).

Since 4sq is dedicated to transmitting presence information di-
rectly related to sites of encounter, this geo-social dataset distin-
guishes itself from that of generic social networks with location
tracking (Twitter, 2010). Whilst activity on such networks can
be considered “simply as the noise of human activity” (Batty,
2010) located in space, 4sq provides us with information about
the popularity of social venues and thus a measure of social in-
teraction density which is strongly coupled to the physical land-
scape.

Understanding some of the possible motivations for checking-in
on the 4sq network is vital for interpreting any analysis of the
aggregate data. In this we expand on (Ratti et al., 2006) in iden-
tifying potential benefits of LBS in a social networking context.
Possible motivations for checking-in on 4sq include (a) Friend
tracking - Tracking the location of friends in real-time can have
social benefits by encouraging social encounter, (b) Urban Dis-
covery
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Fig. 1: Social activity fingerprint for New York City. Based on 592,062 check-ins at 7,049 venues on the Foursquare (4sq) social network. Activity is
produced by GPS-enabled mobile phones. Each dot represents a walkable cell of 400x400 meters. Dot areas are proportional to cumulative 4sq activity
(checkins) within the cell during the period March 2009 to July 2010. At this resolution, recognisable social centers emerge, with the top 10 walkable
centers labelled according to colloquial names. The bars represent the relative contribution of different social venues to the overall activity in any given
walkable cell, with the order of the bars reflecting the date at which that venue first registered activity on the 4sq network. Revealing the city in terms of
social interaction density on such networks can be considered a form of ‘sensing’ the urban.

- As a navigation tool it can encourage exploration of ur-
ban space, (c) Place Recommendation - Users can recommend
places to friends using comments that can be added as metadata
to check-ins, (d) Experience Sharing - Users can share and rec-
ommend experiences to be had at certain locations by supplying
‘tips’ of things to do at each location, (e) Location-Based Gam-
ing - Users can compete to become the ‘mayor’ of a location, (f)
Listings - The network can be consulted to find out what popular
venues are within walking distance of a location.

Urban Analysis

Data

This paper collects and analyses over 800,000 data records from
the 4sq network. The taxonomy of the 4sq dataset consists of
geo-located venues at which checkins (activity) take place. The
aggregate data relates the two, by expressing the total number

of checkins to date at each venue as a real number. This gives
us a snapshot of the cumulative data produced by the network
from March 2009 to July 2010. Using such an aggregate dataset
we can see how activity on the network is distributed through a
city.

The data has been collected by a systematic crawl of the 4sq pub-
lic Search API, which returns upto 50 nearby venues when sup-
plied with a geo-location. For each city, a lattice is constructed
of search locations 2km apart and a search performed on each
point of the grid. 2km is chosen as it consistently produces over-
lap in results, implying good coverage of the intervening space
between search locations. This results in 200-400 searches per
city, the exact number varying based on the size of the surface
area covered for each city. As such, the data does not represent
a comprehensive data snapshot, but sufficient venue data has
been collected – in excess of 6,000 venues for each city – to as-
sume a representative sample of 4sq data for each city.

The data has been collected for three cities: London (LDN),
New York City (NYC), Paris (PAR), in order to allow for an inter-
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Fig. 2: Social activity fingerprints for (left to right) London, New York City and Paris. Each dot represents a walkable cell of 400x400 meters. Dot areas
are proportional to cumulative 4sq activity (checkins) within the cell between March 2009 and July 2010. Activity levels are normalised across the three
cities. The fingerprints thus present the cities in terms of social activity density. Parisian activity looks compact whilst London’s looks dispersed and
fragmented. NYC activity is highly concentrated in Manhattan, the outline of the peninsula clearly visible in the fingerprint, and is contrasted by vast
areas with very little background activity. [In colour online]

urban analysis. The data, along with the parameters used for
‘crawling’ the three cities, is available in full online (Bawa-Cavia,
2010).

This method of data collection pertaining to social activity in
space has distinct advantages over the ‘gatecount’ approach
adopted in (O’Neill et al., 2006), which relies on electronic ob-
servation posts being set up around the urban space in ques-
tion, detecting bluetooth signals emitted by the mobile phones
of passers-by. Whilst that is a more direct means of ‘sensing’
flows of pedestrians through a point, it’s a far more intensive
method of data capture. The ‘gatecount’ method produces data
relating to the proximity of individuals and therefore direct en-
counter, but lacks the broad scope of location-based social net-
work data, which can be aggregated and analysed in large vol-
umes without sacrificing a high spatial resolution, all at a low
cost to the researcher.

The demographic specificity of the 4sq network should be con-
sidered when interpreting the aggregate data. In the UK, 3G
mobile phone penetration is estimated at 26.5% of the popula-
tion (Ofcom, 2010), whilst the global demographics of 4sq show
a pronounced skew towards university educated 25-34 year olds
and a small skew towards females (Alexa, 2010). Activity anal-
ysed in this paper clearly relates only to these social groups, and
the exclusionary aspect of these “techno-socialities” (Sheller,
2004) should be acknowledged. This does not prevent an inter-
urban analysis from proceeding. Assuming that the demo-

graphic groups are similar in each city, insights can be gained
from the comparative spatial distribution of 4sq activity in each
urban case.

Activity Fingerprints

The 4sq data has been used to construct social activity finger-
prints for three cities (Fig. 1, Fig. 2). In these visualisations, ac-
tivity on the network is aggregated onto a grid of ‘walkable’ cells
(each one 400x400 meters in size) represented by dots. The area
of each dot corresponds to the level of activity in that cell. A reso-
lution of 400m is chosen based on research into threshold walk-
ing distances in urban areas (O’Sullivan and Morrall, 1996; Part-
nership and TfL, 2006) and an observation that cells of this size
map closely to colloquial neighbourhood names. By this pro-
cess we can see social activity centers emerge in each city. The
maps yield recognisable, namable centers. The top 10 walkable
centers for NYC are labelled in Fig. 1 and similar hubs emerge
for London and Paris, such as Shoreditch and Le Marais. These
visualisations are omitted here due to space but are available on-
line (Bawa-Cavia, 2010).

These spatial visualisations omit the usual topographic and car-
tographic details present in traditional maps, abstracting the city
in order to focus on its activity fingerprint. This presentation of
the city in terms of density of social network activity can be seen
as an example of ‘sensing’ the urban.
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Social Hubs

The activity fingerprints in Figures 1 & 2 imply the presence of
centers. A rank-size plot for venue popularity is produced in
Fig. 3 (a), which confirms the emergence of social hubs in each
city. Fig. 3 (a) presents a highly non-linear activity distribution,
showing a handful of high popularity venues (hubs) trailed by a
long tail of low activity locations. Zipf’s Law is a fit for the upper
portion of the distribution (20 < n < 500), describing a power-law
decay function C = k/r s where C is checkins magnitude, k is a
constant, r is the rank, and s is defined by linear regression to be
(sLDN ,sN Y C ,sPAR = 0.573, 0.706, 0.623). The self-organisation of
activity into such a power-law distribution is striking, and one
can reasonably assume that multiplier or feedback effects are at
play. Following on from this evidence of a strong concentration
of activity into hubs, an examination of the spatial logics of these
hubs becomes the object of this paper.

If we take hubs to mean high-popularity locations (venues)
present in the tip of a power law distribution, we can then de-
fine centers as agglomerations of activity at one or more venues.
Multiple definitions for these ‘centers’ are proposed in this pa-
per, and we begin with a crude definition of a center as a fixed-
size walkable cell (400x400m), of the type used in constructing
activity fingerprints in the previous section. We look now at the
urban phenomenon of polycentricity through an examination of
the spatial dispersion of these centers.

Polycentricity

Polycentricity exists as a spatial phenomenon only with re-
spect to activities organised into identifiable centers. Various
attempts have been made to provide quantitative measures of
polycentricity at the urban and regional level. Some focus on
the rank-size distribution of settlement populations (Meijers,
2008a), while others have used network analysis (Green, 2007),
or the distribution of flows on public transport networks (Roth
et al., 2010). Here an urban-scale investigation of polycentricity
is presented based on the spatial dispersion of activity centers.
Unlike previous measures, this analysis expresses both func-
tional and morphological aspects of polycentricity, as defined in
(Green, 2007), since it considers both activity and its geographic
distribution.

In order to highlight these two aspects of polycentricity, let
us first examine the rank-size measure presented in (Meijers,
2008b), which is produced by a regression analysis of log rank-
size distributions. We can frame this in terms of venues ranked
by checkins, which are presented in Fig. 3(b). This clearly sepa-
rates LDN and PAR, with far lower gradients and therefore greater
claim to polycentricity, from NYC, which would be considered
more monocentric. This is partly consistent with our visual ev-
idence – compare Fig. 6 with Fig. 8 and NYC activity does look
more monocentric. However the fingerprints in Fig. 2 imply that
polycentricity varies greatly between LDN and PAR. Whilst ac-
tivity in the former looks dispersed and fragmented, the latter
looks more compact and contiguous. These morphological as-
pects pertaining to the spatial distribution are missing from the

rank-size measure of polycentricity; it is confined to exploring
solely the functional aspect of the phenomenon in terms of the
statistical distribution of sizes.

Fig. 3: Rank-size plots for 4sq venues in 3 cities, using checkins as the size
parameter. (a) Normal plot, showing hubs trailed by a long tail of low ac-
tivity venues, (b) Log-log plot, Zipf’s law can be seen to be a fit for the
upper portion of the distribution (20 < n < 500), describing a power-law
decay function C = k/r s where C is checkins magnitude, k is a constant,
r is the rank, and s is defined by linear regression to be (sLDN ,sN Y C ,sPAR
= 0.573, 0.706, 0.623).

To demonstrate a fuller expression of polycentricity, we define
centers morphologically as fixed-size walkable cells (400x400m).
We can explore the distribution of these centers by examining
the spatial dispersion of the top N walkable cells of activity,
calculated according to a weighted standard distance measure
(Bachi, 1963). Cumulative activity (check-ins) for each cell is
used as a weighting mechanism and the standard distance µ is
defined as,

µ=
√√√√ N∑

i=1

wi d2
i

W
(1)

Where N is the number of top activity cells considered, wi is the
weight (checkins) for cell i , di is the Euclidean distance of cell i
from the mean center and W is the sum of all weights (checkins).
This gives us a dispersion statistic in distance units which can
be thought of as a standard deviation in space. We produce this
measure for N from 2 to 500 for each city. The activity dispersion
graph is shown in Fig. 4.

The steep rise in spatial dispersion witnessed in the case of LDN
as more top cells of activity are included is contrasted by linear
rises for the other two cities. This steep gradient, developing into
superlinear growth from 10 ≤ N ≤ 200, is evidence of a greater
degree of polycentricity in the social activity of LDN, as it shows
how the most active cells (or ‘centers’) of the city are increasingly
spread over a much larger area than the other two cities. The low
gradient exhibited by PAR is, as I will argue later in the paper,
indicative of a decentralisation which exists as a limiting case of
polycentric space.
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Fig. 4: (a) Spatial dispersion of activity as a weighted standard distance,
µ, for N top activity cells, showing how activity in LDN tends towards a
more polycentric behaviour, implied by the greater dispersion of its top
centers of activity. The low slope of PAR expresses both compactness and
a geographically even distribution of activity.

By the time we reach the 100 highest activity cells in each city, the
standard distance for LDN (µ100

LDN =8,657m) is almost double that
of PAR (µ100

PAR =4,965m). Taken in this form, the variance in spatial
dispersion µ between cities is not a direct measure of polycen-
tricity but rather a measure of overall compactness of the city’s
social functions. Indeed, if we normalise µ100 by the surface area
considered for each city to produce µ̄100, we find it has similar
levels for all 3 cities (µ̄100 ≈ 19m−1). However as the magnitude
of absolute µ increases, it implies an increased fragmentation of
activity. This fragmentation is a necessary pre-requisite to defin-
ing a polycentric space – ‘centers’ themselves being defined by
their distance from other sites of activity (Parr, 2010) – so we can
consider absolute levels of dispersion µ as contributory to poly-
centricity.

By introducing a null model we can investigate the relative con-
tribution of both aspects of polycentricity – functional and mor-
phological – in the case of each city. Our null model preserves the
geographic distribution of venues but distributes activity (check-
ins) evenly over all venues, eliminating variance in the functional
dimension.

Fig. 5: Comparison of spatial dispersion µ of 4sq activity across N top
activity cells in each city with a null model. The null model preserves the
geographic distribution of venues but spreads activity evenly between
them. NYC produces the largest difference between null model and real
data, implying that a strong spatial concentration of activity is counter-

ing the geographic dispersal of venues in that city.

We run our dispersion analysis based on standard weighted dis-
tance as before, across both each city and its null model, graph-
ing both in Fig. 5. There is a marked difference in the relation be-
tween each city and its null model – NYC’s null model produces
much higher levels of dispersion than the real data, more than
double at µ200. This implies a strong concentration of social ac-
tivity in the real data which counters a high spatial dispersion
of venues, the functional component of the activity distribution
acting against morphological dispersal. This concentration of
activity is far more evident if we map individual venues in the
city, which we do in Fig. 6. PAR, by contrast, has similar levels of
µ for both null model and real data, implying the real data con-
tains an activity distribution that’s evenly dispersed throughout
its geographical locations. Finally LDN sits between the two, ac-
tivity is more concentrated than its null model, but less so than
in the case of NYC.

Fig. 6: Strong levels of spatial clustering in 4sq activity at venues in New
York City. In this map each social venue is rendered as a translucent
dot. Dot diameter is proportional to cumulative activity (checkins) at
the venue. The overlapping of dots gives us a visual measure of activity
intensity.

Combining observations on the statistical distribution of activ-
ity with the spatial dispersion of top activity cells provides us
with a more complete understanding of functional and mor-
phological polycentricity, clearly distinguishing tendencies be-
tween the three urban cases considered. There is clearly no one
definitive measure for such a multi-scalar, multi-faceted and re-
lational phenomena as polycentricity. We can understand it fur-
ther, however, by examining its relation to a complementary spa-
tial phenomenon: fragmentation.
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Fig. 7: Fragmentation of social activity on the Foursquare network in London, New York and Paris. The scan-based clustering technique DBScan is
used to detect clusters of Foursquare venues within a walkable (400m) distance to each other. Each polygon is formed by joining venues belonging to
the same cluster. The darkness of each polygon is proportional to the cluster activity density, defined as the number of Foursquare checkins divided
by the number of venues in the cluster. This diagram visualises 18,805 venues arranged into 1,208 clusters. LDN and NYC show much higher levels of
fragmentation than PAR, which breaks down into far fewer, larger clusters.

Fragmentation

Spatial fragmentation can only be defined with reference to a
threshold distance, beyond which element A is considered dis-
tinct and separate from element B . The scan-based spatial den-
sity clustering algorithm DBScan (Ester et al., 1996) provides
us with the means to examine activity with reference to such
a threshold distance. This is pursued to test a hypothesis that
the post-modern metropolis functions as a social ‘archipelago’,
a fragmented set of islands characterised by high-density social
activity.

DBScan detects morphologically diverse clusters of activity, pro-
viding us with a more refined definition of a ‘center’ than the
fixed-size walkable cell. The DBScan algorithm works by iter-
atively aggregating geo-located points into clusters based on a
threshold distance ε and a minimum cluster size, cmi n . Start-
ing with a random point, the algorithm ‘scans’ outwards, adding
points to clusters when they are within the ε distance of any ex-
isting member in the cluster. Points which cannot be assigned
to any cluster are marked as ‘noise’. This process is iterated until
every point has been examined exactly once.

We model 4sq venues as geo-located points. As DBScan is sen-
sitive to its starting point, we run it 20 times for each city start-
ing with a random venue each time and report here the mean
results, observing a statistical variance of under 5% for all the
relevant measures. We can explore clusters of venues typified
by small, walkable links by defining ε as a Euclidean distance of
400 meters, and cmi n as 3 venues. This threshold distance is an
embodied measure directly related to the mobility of individuals
in urban space. If we run DBScan with these parameters, Paris
breaks down to far fewer, larger clusters than the other two cities
(LDN,NYC,PAR = 448,496,264 clusters), generating under a quar-
ter of the noise (LDN,NYC,PAR = 1596,1431,407). Cluster activ-

ity densities are then calculated as the aggregate 4sq activity in a
cluster divided by the number of venues. The clustering results
are shown in Fig. 7.

Parisian activity stands out as far less spatially fragmented than
the other cities, looking less like an archipelago and more like
a contiguous blanket of social activity. London has the highest
noise and New York has the highest level of venue fragmenta-
tion, roughly double that of Paris. Despite the percentage vari-
ance in venues across the three cities being under 10%, the per-
centage variance in fragmentation is statistically large (>40%).
Whilst increasing fragmentation has been thought a characteris-
tic of the western post-metropolis (Graham and Marvin, 2001b;
Soja, 2000), the analytical results show how three such urbanisa-
tions can exhibit widely differing levels of fragmentation in the
context of their social activity.

Agglomeration

Figures 6 & 8 show social morphologies in terms of activity in-
tensity at 4sq venues, each city presenting a unique agglomera-
tion in space. Activity seems most evenly distributed in the case
of Paris – often along radial and axial lines (which correspond in
many cases to avenues and boulevards) – and most concentrated
around large hubs in the case of New York. Within the scope of
the data, Parisian activity seems the most decentralised. We can
confirm this by examining the statistical dispersion of the activ-
ity distribution shown in Fig. 3 (a).

The Gini coefficient Gi for city i provides us with a comparative
measure of statistical dispersion based on the relative mean dif-
ference of activity between any two venues in the distribution,
defined as,
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Gi =
n∑

i=1

n∑
j=1

|xi −x j |
/

2µ̄x n(n −1) (2)

Where n is the number of venues in the distribution, xi / j is ac-
tivity (checkins) at venue i / j as a proportion of the total activity
for the city, and µ̄x is the mean city-wide fractional activity for a
venue.

The Gini Coefficient is normalised by activity magnitude, allow-
ing for a comparative analysis across urban cases, and exists in a
range of 0 < Gi < 1, where 0 indicates a completely even distribu-
tion of activity and 1 indicates a total concentration of activity at
a single venue.

GPAR (0.655) is significantly smaller than GN Y C (0.812), imply-
ing a lower statistical dispersion in its distribution. This ‘flat-
ter’ activity distribution reflects less dominance by a handful of
hubs; Parisian activity can thus be said to be more decentralised,
supporting our visual evidence. We examine now whether this
purely statistical analysis reflects differing patterns of spatial ag-
glomeration.

Fig. 8: Decentralised 4sq activity for venues in Paris. In this map each so-
cial venue is rendered as a translucent dot. Dot diameter is proportional
to cumulative activity (checkins) at the venue. The overlapping of dots
gives us a visual measure of activity intensity. Activity can be seen to set-
tle along radial and axial lines corresponding to the larger avenues and
boulevards of the city.

45% of all activity in NYC is located within a walkable 400m dis-
tance of the upper 1 percentile of activity in the city. This is a
higher level of concentration than the other two cities, for which
the figures are (LDN, PAR = 30%, 37%). All three figures imply
a heavy agglomeration of activity with respect to the total sur-
face area of the city. We can explore the extent of hierarchical ag-
glomeration of activity around hubs by examining spatial auto-
correlation (Cliff and Ord, 1970), defined for our data as the ten-

dency of venues to be located near others of a similar activity
level. We calculate a local version of Moran’s I coefficient of spa-
tial auto-correlation (Anselin, 1995) for each venue i , with Ii de-
fined as,

Ii = (xi − µ̄x )
n∑

j=1
wi j (x j − µ̄x )

/
m2 (3)

with the same notation as for Gi , where wi j is the weight ele-
ment of the standardised weight matrix W, indicating the prox-
imity of venue i to j in terms of Euclidean distance. Elements in
W are normalised such that they sum to 1 in each row. m2 is the
second moment of the distribution, defined as,

m2 = 1

n

n∑
i=1

(xi − µ̄x )2 (4)

As an urban-scale indicator of spatial auto-correlation, Ii ex-
presses the locational proximity of similarly sized venues for
each individual venue. The expected I for a random model, E(I ),
is−1/(n−1), and we subtract this from Ii when expressing Moran
measures graphically, producing a scale in which Ii >0 indicates
positive spatial auto-correlation. We plot this Ii for the upper 10
percentile of the activity distribution in each city.

The Moran scatterplot (Fig. 9) produces a positive correlation
with r = 0.569, suggesting a process of activity clustering is in ef-
fect, with high activity locations more likely to be spaced closer
together than lower activity locations. This correlation is evident
in all three urban cases. This pattern contradicts that produced
by canonical central place theory (Christaller, 1966), the spatial
model which produces a hierarchy of increasingly dispersed cen-
ters, larger hubs spaced further apart than smaller ones.

Fig. 9: Urban-scale Moran measure of spatial auto-correlation, Ii , for
each venue i , plotted against the proportional activity (checkins) at each
venue, xi , for the top 10 percentile of the LDN activity distribution. Lin-
ear regression produces a positive correlation with r = 0.569, showing
that hubs tend to be spaced closer together than lower activity venues
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are from other venues with equivalent activity levels. The correlation co-
efficient is included on the plot.

We can now explore the hypothesis that agglomerations of
venues or activity are more likely to form around high activity
hubs, in other words, that activity attracts further activity by a
spatial multiplier effect (Anselin, 2003), a hypothesis present in
some spatial interaction models (Wilson, 2008). We do this by
constraining our urban-scale Ii measure (Eq. 3) to an 800m ra-
dius r around the venue in question. This means only j neigh-
bouring venues are taken into account within the radius r =
800m when computing each Ii , giving us a local indicator of spa-
tial auto-correlation (LISA).

The results are shown in Fig. 10. The weak positive linear corre-
lation shows how at the local level, higher activity venues have a
greater tendency to co-locate than low activity venues, as values
of Ii >0 indicate a positive spatial auto-correlation. This implies
the presence of a spatial multiplier effect either produced by, or
simply reflected in, this form of social networking activity. The
same trend is observed for all three cities.

Fig. 10: Local Moran measure of spatial auto-correlation, Ii , plotted
against the proportional activity (checkins) at each venue, xi , for the
top 10 percentile of the LDN activity distribution. This local measure
is constrained to a radius r = 800m around the venue i in question,
with Ii >0 implying positive spatial auto-correlation. The line of best fit
shows a weak positive linear correlation, with the correlation coefficient
marked on the plot. This implies that at the local level, higher activity
venues have a tendency to co-locate, implying a spatial multiplier effect
in which activity attracts further activity.

Discussion

The distribution of social activity in cities has been found to
be strongly non-linear in the case of the 4sq network, adopting
a power-law, with relatively small quantities of hubs emerging
from a long-tail of low activity locations. This self-organisation
into social hubs appears to be a marker of urban activity and is

true for the three cities examined here.

The 4sq data reveals spatial tendencies in social activity, allowing
us to clearly distinguish each city by its characteristic spatial dis-
tribution. There is significant variance in the spatial dispersion
of activity ‘centers’ across the three cities. We have shown how
London socially functions more polycentrically than the other
two cities, and that New York appears to have the most spatially
concentrated activity distribution. Polycentricity is presented as
a relational and multi-scalar phenomenon with functional and
morphological components, which cannot be captured by any
single measure.

Fragmentation is complementary to polycentricity. We have ex-
plored how the city can be thought to function as a fragmented
space of social interaction, and how the cities differ greatly in this
respect, the compact form of Paris countering this tendency to
fragment. Embodied measures have allowed these types of com-
parative inter-urban analyses to proceed in spite of the many
specificities that exist when discussing a particular metropo-
lis.

Decentralisation, as evident in Paris, can be seen as a limiting
case of polycentricity, a state beyond the polycentric in which
spatial centers cannot be clearly distinguished from an activity
distribution. This is characterised by a low slope coefficient in
the log form of its rank-size activity function (Fig. 3(a)), coupled
with a low slope coefficient in the spatial dispersion function
(Fig. 4), as well as a lower urban-scale Gini coefficient for its ac-
tivity distribution.

We have examined the tendency of venues to agglomerate
around activity hubs. At both the urban and local scale, activ-
ity appears to attract activity, inducing co-location and imply-
ing a spatial multiplier effect. The power-law distribution shown
in Figure 3(a), supports these notions of hierarchical agglomer-
ation, implying the emergence of hubs via a feedback mecha-
nism.

It is reasonable to assume that 4sq could itself exert a reinforcing
influence on this multiplier effect. By making popularity data
and personalised recommendations for venues easily accessi-
ble on location to users, 4sq has the capacity to produce addi-
tional feedbacks of its own that tilt the distribution further in
favour of hubs. Conversely, 4sq could also promote the growth of
new hubs if recommendations spread through friend networks.
It seems clear that with enough adoption, location-based social
networks will begin to significantly influence mobility patterns
in this manner.

Online social network data is potentially capable of reveal-
ing socio-spatial phenomena, such as sprawl or segregation.
Parisian data falls away sharply beyond the péripherique ring
road, meaning activity is contained to under a quarter of the
unité urbaine, implying a deep segregation between the 4sq net-
work demographic and other groups in the wider city. Likewise
sprawl can be considered in terms of low levels of interaction
density or a scarcity of social venues. This is a potential direc-
tion for further analysis.

The data trails produced by locative networks offer us new snap-
shots of the city as a living system. Research can use this data
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to calibrate spatial interaction models (SIM) and provide empir-
ical data for testing the validity of location choice theories. This
type of data awaits correlation with a number of other spatial
datasets, such as the location of public transport access nodes
or land-use data.

Further research avenues are open in examining the spatio-
temporal logic of social activity (rhythms, bursts, etc) using
a richer social networking dataset, including individual GPS
events, to provide insights into urban mobility. Furthermore,
examining the spatial clustering of activity in thousands of in-
dividual social networks will allow us to characterise the spatial
distributions of groups in the city, linking the structure of social
networks with their spatial manifestation. The observation that
“Social milieus have nonrandom spatial clustering tendencies”
(Currid and Williams, 2010) can be expanded on by clarifying
how different groups use urban space. These datasets would al-

low for an analysis not possible with the aggregate data snapshot
examined here.

This form of research has the capacity to produce insights on
the ‘living’ city, conceived as an assemblage of social interactions
unfolding in real-time, leaving their cumulative history bound in
data trails which engage in an increasingly complex relationship
with the physical landscape.

Acknowledgements. I would like to acknowledge the contribu-
tions of my supervisors Dr. Shi Zhou and Prof. Michael Batty of
UCL. Thanks also to Dr. Jon Reades of CASA, whose recommen-
dations were influential, and Naveen Selvadurai of Foursquare
for making the data public via the Foursquare API. This research
is funded by a UK based EPSRC project entitled SCALE (Grant
Ref: EP/G057737/1).

References

Alexa (2010). Foursquare.com audience statistics, http://www.alexa.com/siteinfo/foursquare.com.

Anselin, L. (1995). Local indicators of spatial association - lisa. Geographical Analysis, 27(2):94–115.

Anselin, L. (2003). Spatial externalities, spatial multipliers and spatial econometrics. International Regional Science Review, 26(2):153–
166.

Bachi, R. (1963). Standard distance measures and related methods for spatial analysis. Papers in Regional Science, 10(1):83–132.

Batty, M. (1990). Invisible cities. Environment and Planning B: Planning and Design, 17(2):127–130.

Batty, M. (1997). The computable city. International Planning Studies, 2(2):155–173.

Batty, M. (2010). The pulse of the city. Environment and Planning B, 37(4):575–577.

Bawa-Cavia, A. (2010). The city as social archipelago, http://www.urbagram.net/archipelago.

Castells, M. (1989). The informational city: information technology, economic restructuring and the urban-regional process, chapter 3,
pages 127–171. Blackwell, Oxford.

Christaller, W. (1933 (translated in 1966)). The Central Places of Southern Germany. Prentice-Hall, NJ.

Cliff, A. D. and Ord, K. (1970). Spatial autocorrelation: A review of existing and new measures with applications. Economic Geography,
46(269-292).

Currid, E. and Williams, S. (2010). The geography of buzz: art, culture and the social milieu in los angeles and new york. Journal of
Economic Geography, 10(3):423–451.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland OR, pages 226–231.
Association for the Advancement of Artificial Intelligence, 445 Burgess Drive, Suite 100, Menlo Park, California 94025, USA.

Foursquare (2010). http://foursquare.com/.

Graham, S. (1997). Cities in the real-time age: the paradigm challenge of telecommunications to the conception and planning of urban
space. Environment and Planning A, 29(1):105–127.

Graham, S. and Marvin, S. (2001a). Splintering Urbanism: Networked Infrastructures, Technological Mobilities and the Urban Condition,
page 415. Routledge: London.

Graham, S. and Marvin, S. (2001b). Splintering Urbanism: Networked Infrastructures, Technological Mobilities and the Urban Condition,
chapter 3 - The collapse of the Integrated Ideal, pages 90–135. Routledge: London.

Green, N. (2007). Functional polycentricity: A formal definition in terms of social network analysis. Urban Studies, 44(11):2077–2103.

9



Haklay, M., Singleton, A., and Parker, C. (2008). Web mapping 2.0: The neogeography of the geoweb. Geography Compass, 2(6):2011–
2039.

Meijers, E. (2008a). Measuring polycentricity and its promises. European Planning Studies, 16(9):1313 – 1323.

Meijers, E. (2008b). Measuring polycentricity and its promises. European Planning Studies, 16(9):1320.

Ofcom (2010). The communications market: 2010, http://stakeholders.ofcom.org.uk/market-data-research/market-
data/communications-market-reports/cmr10/telecoms-networks/.

O’Neill, E., Kostakos, V., Kindberg, T., Schiek, A., Penn, A., Fraser, D., and Jones, T. (2006). Instrumenting the city: Developing meth-
ods for observing and understanding the digital cityscape. In UbiComp 2006, LNCS, volume 4206, pages 315–332. Springer Berlin,
Heidelberg.

O’Sullivan, S. and Morrall, J. (1996). Walking distances to and from light-rail transit stations. Transportation Research Record, 1538:19–
26.

Parr, J. (2010). The polycentric urban region: A closer inspection. Regional Studies, 38(3):231–240.

Partnership, C. L. and TfL (2006). Legible london - a wayfinding study, http://www.tfl.gov.uk/microsites/legible-london/12.aspx.

Pulselli, R., Ratti, C., and Tiezzi, E. (2006). City out of chaos: Social patterns and organization in urban systems. International Journal
of Ecodynamics, 1(2):125–134.

Ratti, C., Frenchman, D., Pulselli, R. M., and Williams, S. (2006). Mobile landscapes: using location data from cell phones for urban
analysis. Environment and Planning B, 33(5):727–748.

Ratti, C., Sevtsuk, A., Huang, S., and Pailer, R. (2007). Location based services and telecartography: Mobile Landscapes - Graz in Real
Time, chapter 31, pages 434–444. Springer: Berlin.

Reades, J., Calabrese, F., and Ratti, C. (2009). Eigenplaces: analysing cities using the space-time structure of the mobile phone network.
Environment and Planning B, 36(5):824–836.

Roth, C., Kang, S. M., Batty, M., and Barthelemy, M. (2010). Commuting in a polycentric city. arXiv:1001.4915v2.

Sheller, M. (2004). Mobile publics: beyond the network perspective. Environment and Planning D, 22(1):39–52.

Shoval, N. (2007). Sensing human society. Environment and Planning B, 34(2):191–195.

Soja, E. W. (2000). Postmetropolis: Critical Studies of Cities and Regions, page 231. Wiley-Blackwell.

Twitter (2010). http://www.twitter.com.

Wilson, A. (2008). Boltzmann, lotka and volterra and spatial structural evolution: an integrated methodology for some dynamical
systems. Journal of the Royal Society Interface, 5(25):865–71.

10


	Abstract
	Introduction
	Location-Based Social Networking
	Data
	Activity Fingerprints
	Social Hubs
	Polycentricity
	Fragmentation
	Agglomeration
	Discussion
	Acknowledgements
	References

